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Abstract To date macro-analysis methods have been

invariably used to analyse textile composite structures for

forming and mechanical performance. Techniques such

as geometric ‘mapping’ for the draping of textile fabrics

and classical laminate analysis combined with simplified

failure criteria to determine mechanical performance

have formed the basis of most of these methods. The

limited accuracy of the physical laws applied is appro-

priate to macro-analysis methods in which the fibre-

matrix composite is treated as homogeneous medium.

Today, however, modern high performance computers

are opening new possibilities for composites analysis in

which far greater detail of the composite constituent

materials may be made. This paper presents Finite Ele-

ments techniques for the draping simulation of textile

composites, specifically biaxial Non Crimp Fabrics, in

which the complex deformation mechanisms of the dry

tows and stitching may be properly modelled at the

individual tow and stitch meso-level. The resulting ‘de-

formed’ Finite Element model is then used to provide a

basis for accurate simulation of the impregnated com-

posite structure. The modelling techniques for both

draping and structural analysis are present, together with

validation results for the study of a relatively large-scale

hemisphere composite part.

Introduction

In recent years new textile fabric forms have emerged for

high performance cost effective composites manufactur-

ing; amongst these biaxial Non Crimp Fabrics (NCF)

having 0�/90� and ±45� fibres with tricot, or chain stitch-

ing, is a popular choice for draping complex geometrical

shapes, Fig. 1. A particular advantage of NCF is the

absence of crimp which enhances in-plane mechanical

properties; furthermore, the through thickness stitching

improves handling stability and delamination toughness. In

combination with Liquid Composite Moulding technolo-

gies to infuse resin these preforms can provide cost

effective, high performance composites, having highly

integral and complex shapes. For accurate manufacture and

design of composites parts simulation methods are needed

to predict both fabric draping and final part performance of

the impregnated composite.

Over the past fifty years mapping methods [1] have been

partially successful to analyse drape of certain fabrics over

simple geometrical shapes. These techniques are based on a

simple kinematic algorithm in which the fabric is idealised

as an orthogonal network of fibres with cross over points

acting as fixed pin-jointed nodes. The method was origi-

nally developed for plain weave fabrics having tow inter-

lacing that prevents relative tow sliding. In recent years

enhancements have accounted for non-symmetric shear in

textiles [2] and blankholder friction [3]; however, the

method has limited accuracy and is essentially a geometric

mapping of one shape to another that cannot properly treat

many important material and processing conditions.

More recently the continuum Finite Element (FE)

method has been applied to draping of various fabric types

and forming operations; for example, thermoforming of

UD and woven fabrics [4] and pressure draping of woven
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[5] and NCF [6]. The flexibility of the Finite Element

method allows many variables found in composite sheet

forming to be represented, such as complex tooling, fric-

tion and blankholders. The homogenised anisotropic con-

stitutive fabric model combined with a shell element

formulation can reasonably treat in-plane stretching, com-

pression, bending, shear and shear locking. However, for

analysis of individual tow slippage mechanisms, local tow

compaction, stitch failure and the complex stitch-to-tow

interactions a more detailed meso-mechanical modelling

approach is needed.

This paper presents a meso-modelling approach for

coupled drape and failure simulation of a biaxial NCF

having a tricot stitch. Details of the selected NCF for this

work are presented in Table 1. For draping the approach

has been specifically developed to ensure that all principle

deformation modes of the individual tows and stitches are

represented and, importantly, that the technique is com-

putationally efficient so that relatively large-scale struc-

tures may be analysed. For failure analysis of the

impregnated composite the draped meso-mechanical FE

mesh is used with material models for the impregnated

tows. The tow constitutive model accounts for elastic,

damage and ultimate failure. Modelling strategies for the

meso-mechanical representation of NCF and procedures

for identification of material parameters for drape and

failure analysis are presented, together with validation

results for the full-coupled drape and impact simulation of

a NCF composite hemisphere part.

Non-continuum mesoscopic fabric modelling

In order to present the modelling strategy adopted a clear

understanding of the key deformation mechanisms in

biaxial NCF is necessary. These mechanisms have been

described [7, 8] and are shown schematically in Fig 2.

In detail the six mechanisms are:

(a) Tow compaction due to reduction in fabric area dur-

ing in-plane shear, or when directly compacted by

tooling constraints.

(b) In-plane fabric shear which is resisted by frictional

forces at the tow contact points and stitching.

(c) Inter-tow frictional sliding which is prevalent in NCF

materials due to the absence of tow inter-locking.

Resistance is provided by contact to surrounding tows

and the stitching.

(d) Cross-over point sliding which is also prevalent in

NCF materials due to the absence of tow interlocking.

Frictional resistance is provided by contact between

the fibre plies.

(e) Stitch tension, since during shear deformation the

stitches deform generating additional tension within

the stitching and, consequently, additional friction

forces.

(f) Frictional stitch sliding which occurs at stitching loop

points as a result of differential tensions in adjoining

sections of the stitch geometry.

(g) Stitching-to-fibre interaction.

Each of the above mechanisms is subject to coupling.

For instance, in-plane shear will generate stitch tension and

sliding leading to tow compaction and increased inter-tow

shear friction.

Fig. 1 The assembly and an

example of biaxial Non Crimp

Fabric

Table 1 Specifications of the selected (±45�) biaxial SAERTEX

NCF used to develop the meso-mechanical drape and failure models

Tricot stitched biaxial (±45�) Non-Crimp Fabric Specification

Material: Saertex V93813 

Fabric type: Biaxial ±45 NCF  

Weight: 321gm-2 

Fibres: 12K TORAY T700 carbon fibre 

Stitch: PES 76 dtex (Tricot) 

3.32mm 

4.98mm

0.452mm 
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Mesoscopic modelling strategy

The aim of the mesoscopic drape model is to capture all

principle deformation mechanisms outlined above, but

remain practical for analysis of relatively large scale

structures; this has led to the following modelling ap-

proach. Each ‘blanket’ of biaxial NCF comprises of two

separate ply layers constructed from distinct rows of solid

elements to model individual tows, with interconnecting

bar elements to approximate the stitching, Fig. 3. The

width of each tow is similar to the real tows, but is also

dictated by the location of the through-thickness stitching

points. Contact and frictional sliding between the tows and

stitches is treated using an appropriate contact algorithm

and additional stitch-to-tow connection elements. This

model has been implemented in PAM-CRASH, an explicit

Finite Element simulation code.

Mesoscopic model: tow characterisation

The tow deformation behaviour must be characterised for

axial, transverse and bending stiffness. Whereas the axial

and bending stiffness is readily modelled, the non-linear

transverse stiffness behaviour is more difficult since this is

due to the complex compaction of a bundle of many

individual fibres. The constitutive model used is a so-called

‘orthotropic bi-phase’ material model [9] consisting of a

separate fibre [Cf] and matrix [Cm] stiffness law,

Ctow½ � ¼ Cf
� �
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where suffixes f and m denote fibre and matrix respec-

tively; E, G and m are Young’s modulus, Shear modulus

and Poisson’s ratio in the fibre direction 1, or transverse

direction 2; Nm is the quantity 1� vm
12vm

21.

The lateral compaction of a tow is important for correct

intra-fibre shear and stitch tension behaviour in the fabric

during shearing. Direct measurement of lateral tow com-

paction is difficult and, consequently, it has been indirectly

measured here using the experimental picture frame

test, Fig. 4a. A numerical model of a unit cell (6.64 mm

· 6.64 mm) of the picture frame test is used to calibrate the

transverse tow modulii E22
m (and E33

m ) against area norma-

lised experimental data, Fig. 4b; in both cases with stitching

removed. The numerical model uses a pin-jointed rigid

frame to induce pure shear whilst maintaining free rotation

a) Tow compaction   b) Inter-tow shear    c) Inter-tow sliding    d) Cross-over point  
sliding 

e) Stitch tension f) Frictional stitch sliding g) Interaction between 
   stitching and fibre tows 

Fig. 2 Mesoscopic fabric

deformation mechanisms in a

biaxial NCF

Stitching bars

Layer 1 soilds

Layer 2 soilds

Fig. 3 A ‘representative cell’

of the meso-mechanical model

for NCF
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at the ends of the tows. Currently, a ‘best-fit’ approach is

used to determine the transverse stiffness. Unfortunately the

fit is not particularly good since the constant compaction

modulii is not well suited to treat the non-linearly increasing

stiffness of tows during compaction. The experimentally

observed increased stiffness at full compaction is approxi-

mated in the numerical model via an internal contact treat-

ment that limits final reduction in tow width.

Correct tow bending stiffness is important to correctly

capture potential fabric buckling and generate correct force

distributions (and frictional forces) between the fabric and

tools in forming curved geometrical shapes. Calibration is

performed based on the fabric flexural rigidity standard

(ASTM 1388) [10] using, in this case, a single tow. From

classical beam theory an initial estimate of fibre elastic

modulus E11
f , matrix elastic modulus E11

m , and shear mod-

ulus G12
m are computed for the measured deflection of a

single tow, Fig. 5. Further calibration is necessary to fit a

simulation model of the test with experimental measure-

ments. This has provided an axial tow modulus E11
f equal to

0.07 GPa for good bending stiffness. This is clearly much

lower than the true axial modulus of 230 GPa for Toray

T700 fibres; however, draping processes are conducted

under low forces and using this value does not lead to

unrealistic axial straining of the tows, as demonstrated later

for the axial bias extension test, Fig. 13. Thus the modulus

is calibrated for correct bending, rather than correct axial

stiffness.

Mesoscopic model: stitch characterisation

The orientation of the tricot stitching, relative to the

direction of fabric shearing, produces different shear

resistance and a so-called ‘shear bias’ effect [6] and is due

to the different loading mechanisms that the stitches

undergo. This can be measured in the picture frame test by

fixing the fabric in the two possible mounting directions

with respect to the loading (shearing) direction, defined as

‘positive’ and ‘negative’ shear in Fig. 6a, b. The shear bias

can be significant, as demonstrated by the large differences

in shear resistance force for positive, negative and

unstitched fabric, Fig. 6c (error bars calculated using a

student T-test method to 90% confidence from 3 tests).

Clearly, it is important that the mesoscopic model must be

capable of capturing shear bias.

The bar elements used to represent the stitching have a

non-linear elastic tension only law, Fig. 7a. A limitation of

the current model is that stitch elements are connected at

common nodes and stitch segments are uncoupled. This

level of modelling cannot permit force redistribution

between adjacent stitch elements or slippage of the stitches

around the tows; only frictional sliding between the stit-

ches and tows is possible. Figure 7b shows tensile cou-

pons of NCF 250 mm long by 50 mm wide, loaded in

both the ‘positive’ and ‘negative’ shear directions. The

positive shear case is used to calibrate the ‘I’ stitches,

whereas the ‘negative shear’ case calibrates the ‘L‘

stitches in the tricot stitch style. Also given in Fig. 7 are

the resistance force experimental measurements and

equivalent numerical results using the techniques

presented below.

Stitch bar element stiffness is based upon axial force

data obtained from bias extension tests and strains deter-

mined using analytical formulae [7]. An assumption is

made here that shear resistance is only dominated by the

a) The picture  

frame test 

b) The numerical unit cell shear model and calibration results 
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=7×10
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Fig. 4 The picture frame shear test and numerical unit-cell model for calibration of transverse tow properties

41.5°

 tow

slide rule 
overhang length 

Fig. 5 Test setup for determination of tow bending stiffness
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stitches up to an inter-fibre shear angle of ~30�, above

which tow compaction forces start to become significant.

A non-linear stitch stiffness has therefore been calculated

by comparing the bias extension axial force, normalised to

the area of either ‘L‘ or ‘I’ stitch elements in the coupon

width, to stitch strain, e, data calculated using the analytical

formulae, coupon and stitch definitions presented in Fig. 8.

In this figure the central bias extension shear angle is hs

caused by the coupon extension D.

hS ¼
p
2
� 2 cos�1 1

ffiffiffi
2
p þ D

2Leff

� �
ð2Þ

d hSð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c2
0 cos2 45� hS

2

� �
þ 2h2
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2
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ð3Þ

c) Shear resistance versus shear angle

Negative shear

Positive shear 

Stitching removed b) Positive  
    shear 
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a) Negative 
    shear 

Fig. 6 Definition of shear

orientations and measurements

for shear resistance for the tricot

stitch NCF

b) Experimental bias extension and equivalent numerical stitch

Tension 

Force

Engineering 
strain

Compression
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Negative shear numerical stitch data  Positive shear numerical stitch data 

x 

F
o

rc
e 

(N
)

14 

12

10

 8

 4

 2

 0

a) 

Fig. 7 Bias extension shear test

results and the stitch element

material model law

h 

c 

d 

t 

a) Bias extension test specimen kinematics     b) Tricot stitch model 

   Un-deformed   Deformed 

Effective picture frame

edge length, Leff

D 

100mm

25
0m

m qS 

2 

Fig. 8 Analytical formulae,

stitch and bias extension

definitions for determination of

stitch strains [7] during

extension
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ffiffiffi
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Mesoscopic model: tow-to-stitch interaction

The stitches wrap around tows to hold them in place.

Tensile stitch forces are generated during manufacture and

also during certain fabric deformations, and lead to friction

interaction forces between the tows and stitches as these

undergo relative sliding. This friction force is treated via

connection elements joining the stitch nodes to the tow

element nodes, Fig. 9a.

Mechanical data for these friction forces is determined

using a ‘tow pull-out test’, Fig. 9b, in which a group of

tows are extracted from the blanket which is held by

clamps on either sides. A difference in pull-out force is

measured for each fibre layer due to a varying constraint

imparted by the stitching, shown in Fig. 9 (error bars cal-

culated using a student T-test method to 90% confidence

from 3 tests). Repeatability of data from this test is poor as

a result of varying impalement of separate tows during the

stitching process and is shown by the large scatter in the

test error bars.

Mesoscopic model: tow-to-tow and fabric-to-tool

friction

Fabric forming is a contact dominated problem for which

explicit Finite Element simulation methods are ideally

suited. Friction between the tows and fibre plies which

constitute a NCF inevitably contribute to the resistance to

in-plane shear and cross-over sliding. This resistance can

be treated using a frictional contact algorithm between the

tows of the meso-model and defined by a simple Coulomb

friction coefficient.

Static friction coefficients have been determined using

the equipment shown in Fig. 10 and a Zwick Z010 tensile

test machine. The contacting plates have been wrapped

with unidirectional fibre tows and tested with relative fibre

orientations of 0� to 90�, to characterise inter-ply contact,

and 0� to 0� to characterise contact between adjacent tows

within the same ply. Tests have also determined the friction

coefficient between the NCF fabric and aluminium tooling

used during draping trials (described later).

F
P
¼ l ð7Þ

Table 2 summarises the contact pressures resulting

from the force, P, and crosshead velocities tested. Mean

average friction coefficients, l, from tests using these

variables have been calculated using Eq. 7 and are shown

in Table 3. The low standard deviations indicate kinetic

b) Stitch-to-tow connection
  elements 

a) The tow pull out test 

d) Minor tow constraint 0  2 4 6 8 10 12  14 

Pull-out distance (mm)

S
tr

es
s 

(N
m

-2
)

5000

4000

3000

2000

1000

0

e) Comparison of test and simulation pull-out force  
   (test and simulation curves superimpose exactly) 

c) Major tow constraint 

Fig. 9 Tow pull-out test

and numerical results
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fibre friction is not dependent on contact pressure or

velocity.

Bias extension simulation results and test comparisons

The bias extension test provides a simple, yet challenging

test to evaluate the proposed mesoscopic fabric model

because of the wide range of deformation mechanisms that

occur. This validation study uses 250 mm long by 100 mm

wide coupons of biaxial NCF, Table 1, loaded axially with

fibres laid in the ±45� directions. Both positive and nega-

tive shear is investigated. Figure 11 shows the deformed

fabric (negative shear case) and illustrates the different

deformation zones that occur and must be captured by the

meso-mechanical model.

The Finite Element mesh, together with loading and

boundary conditions used to replicate the test coupon are

shown in Fig. 12. A total of 36000 solid and 21000 bar

elements are used to model the tows and stitching.

Figure 13 shows a good agreement between deforma-

tion mechanisms observed for the test and the mesoscopic

fabric model. The numerical model correctly predicts the

three distinct deformation zones identified previously in

Fig. 11 and of specific interest is correct simulation of

preferential inter-tow slippage (zone 2) that occurs be-

tween the constrained (zone 3) and the region of near

pure shear (zone 1). A reduction of inter-fibre angle to-

wards the free specimen edges within the central shear

zone is also reproduced and demonstrates the complexity

of the fabric deformation mechanisms that occur within

the specimen.

Figure 14 compares test, simulation and analytical pre-

dictions for positive and negative inter-fibre shear angle at

the centre of the specimen. In each case the simulation shows

improved agreement to test in comparison to the analytical

model. The theoretical model tends to show an incorrect

locking phenomenon in the latter stages of deformation

since inter-tow slip mechanisms, which occur in practice,

are not treated. Furthermore, the analytical formula

Table 2 Friction test variables

Pressure (N/m2) 1370 3700 6500

Crosshead velocity (mm/min) 25 300 1000

Base plate 
Aluminium plate 
or fabric/fibre 
wrapped plate

Fabric/fibre 
wrapped plate; 
area = 80x80 mm 2 

Pulley 

F 
Light gauge
steel wire 

Mass 

P 

Fig. 10 Friction testing

equipment and formulae

Table 3 Friction test results

Contact interfaces l Standard deviation

Tow–tow 0� – 90� 0.18 0.006

Tow–tow 0� – 0� 0.035 0.019

Fabric – aluminium 0.25

2) Zones of preferential 
 inter-fibre slip 

3) Constrained zone
due to clamping 

1)  Zone of near 
    uniform shear 

Fig. 11 Bias extension fabric

test and deformation zones
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incorrectly gives identical results for both cases since the

method is based on geometrical consideration and not

material behaviour. The results are over predicted due to

neglect of inter-tow (or stitch) sliding which occurs in

practice. This model is reasonably valid for woven fabrics

but only approximate for stitched NCF’s at low shear angles.

The simulation results of resistance force for the coupon

under positive and negative shear provide encouraging

comparison with test measurements, Fig. 15. In each case

the lower simulation force levels are attributed to the

approximation of pure shear in the stitch strain model

which is not truly representative of stitch deformation

observed during tests, Fig. 16.

In addition, the uncoupled strain between stitch seg-

ments cannot fully compact the tows, or locally redistribute

loading in the stitch bar elements as occurs in practice. This

effect is most significant in positive shear, at higher coupon

strains, due to the limited compaction of tows.

Draping simulation of a hemisphere

The following study involves draping the biaxial NCF over

a hemispherical metal punch with a blankholder to main-

tain fabric tension and prevent wrinkling. The study pro-

vides a further validation of the proposed meso-mechanical

draping model applied to a process that is representative of

real fabric forming. In addition this study is also used to

demonstrate how the deformed fabric FE mesh may be

used as a basis to perform accurate meso-mechanical fail-

ure analysis of impregnated composites.

The hemisphere study: drape testing

The test setup is shown in Fig. 17, together with interme-

diate forming stages and a final view of the deformed

fabric. The diameter of the metal punch is 156 mm, the

applied blankholder pressure is 3.35 kPa and the rate of

loading is 10 mm/min in an Instron Z010 compression

testing machine.

Test and simulation results for the hemisphere study

A meso-mechanical Finite Element simulation of the

hemisphere forming was performed using 120,000 solid

and 70,000 bar elements for the tows and stitching. The

simulation first involved loading the fabric with the

blankholder to the required pressure prior to forming with

the metal hemisphere at a loading rate of 1 m/s. This is

significantly faster than the quasi-static experiment; this is

necessary to reduce computational time and is a standard

practice in metal and composites forming simulation using

an explicit Finite Element code. Figure 18 shows the

deformed FE mesh after final forming and also gives

25
0m

m

100mm

Fig. 12 The bias extension simulation model: Mesh, dimensions,

boundary conditions and loading for the positive shear case

Fig. 13 Comparisons of global

and local deformations for the

test and simulation bias

extension coupons (positive

shear case loaded to 28%

engineering strain)
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results for variation in fabric shear angle around the

hemisphere at 40 mm height (measured from the plane of

the blankholder) for test, macro- and meso-FE simulation.

The test and meso-simulation show an excellent agree-

ment and, importantly, the numerical model correctly

predicts differences in maximum shear angle in each

quadrant of the hemisphere, which is due to fabric shear

bias identified for this NCF, described previously in section

2.3. The macro- FE model (not shown) used the PAM-

FORM software [11, 12] with shell elements and a

homogenised anisotropic constitutive fabric law and cannot

detect this trend.

Coupling, mechanical data and meso-mechanical

failure analysis for the hemisphere

In order to evaluate meso-mechanical failure analysis the

draped hemisphere part was investigated further. The

Test   Simulation  Analyticalx
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Fig. 14 Comparison of bias
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angle for (a) positive and (b)

negative shear; test, simulation

and analytical predictions

Experimental Simulationx

12

 8

 4

 0

F
o

rc
e 

(N
)

0.00          0.10        0.20      0.30

Engineering coupon strain

x

x

xx
x

0.00          0.10        0.20      0.30

Engineering coupon strain

12

 8

 4

 0

x

x

x

x

x

a) Positive shear b) Negative shear Fig. 15 Comparison of test and

simulation bias extension

resistance force for (a) positive

shear and (b) negative shear
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Stitch slip

Tow compaction 
limits fabric 
deformation and 
reduces stitch 
slippage

a) pre-shear stitch geometry       b) pure shear model            c) simulated non-pure sheared 

   geometry

Significant deviation 

from pure shear 

geometry

POSITIVE SHEAR

NEGATIVE SHEAR

Fig. 16 Deviation of stitch

geometry from pure shear

during bias extension tests
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draped hemisphere fabric was impregnated with resin

(Araldite LY3505/XB3404) using Vacuum Assisted Resin

Infusion (VARI) to obtain the final part shown in Fig. 19.

The draped hemisphere simulation results are easily

converted into a solid composite model having the same

orthotropic material model previously described by Eq. 1.

For simulation of the component mechanical performance

the dry tow data is substituted for elastic and failure

properties of impregnated tows.

Tensile data for both resin and fibres have been obtained

from datasheets available for the resin and fibre compo-

nents defined. Compressive failure data has been assumed

to be ~60% of the tensile data as recorded from tests of

unidirectional materials [13]. Failure simulations of a

single element test case loaded under transverse and lon-

gitudinal loading in tension and compression compare very

well to the required data, Fig. 20.

The crushing of the hemisphere is performed using a

rigid punch of 50 mm diameter at a speed of 1.5 m/s, as

shown in Fig. 21. In general an encouraging agreement is

obtained between test and simulation for the overall

deformations and the crush force versus displacement.

A closer inspection of the deformations and failure modes,

however, does show some differences with the test having

greater compression failure of the tows and the simulation

having more intra-ply shear failure. It is believed this is due

to limitations in the current tow failure model and further

work is studying this aspect.

Fig. 17 Test setup and forming

of the biaxial NCF using a

hemispherical metal punch and

blankholder restraint

Meso FEMacro FEExperiment

Circumferential hemisphere angle (°) 

In
te

r-
fib

re
 a

ng
le

 (
°)

 

0       90       180      270         360

30

20

10

0

Fig. 18 Final deformed mesh

for the meso-mechanical model

and comparison of fabric

shearing for test, macro- and

meso-mechanical FE analysis

Fig. 19 Manufacture of the

impregnated hemisphere part

using the VARI process
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Conclusions

A new meso-mechanical Finite Element model for drape

simulation of textile fabrics (NCF) has been presented that

includes all the important fabric deformation mechanisms.

Some limitations in the current model have been noted; in

particular, an improved constitutive model for tows that

decouples axial, bending and non-linear transverse com-

paction stiffness and techniques to allow redistribution of

local stitch forces due to slip mechanisms that occur would

improve accuracy. Never-the-less the model has proven

successful for complex draping and provides far greater

information on fabric deformations than previously possi-

ble using mapping techniques or homogenised material

laws and continuum shell (or membrane) Finite Elements.

Particularly encouraging has been the ability of the meso-

model to capture shear bias for the hemisphere analysis.

The drapeing model also provides a unique basis to

perform failure analysis of impregnated composite parts

with accurate deformed fabric architectures. Coupling of

process and mechanical performance is readily achieved by

using the deformed fabric FE mesh for the structural

analysis with alternative stiffness-failure material laws to

represent the impregnated composite materials. This

methodology has been successfully demonstrated for the

failure analysis of the hemisphere part.
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Fig. 20 Failure curves in

tension and compression for

transverse and longitudinal

loads

Contour of fibre 

stress (GPa)  

F
o

rc
e 

(k
N

)

0.6

0.4

0.2

  0

 Crush depth (mm)
0 5 10 15 20

Simulation Test

Fig. 21 Comparison of test and

simulation for failure loading of

the impregnated hemisphere

part

J Mater Sci (2006) 41:6725–6736 6735

123



6. Creech G, Pickett AK, Greve L (2003) The 6th International

ESAFORM Conference on Material Forming. Salerno, Italy,

p 863

7. Wiggers J, Long A, Harrison P, Rudd C (2003) The 6th Inter-

national ESAFORM Conference on Material Forming. Salerno,

Italy, p 851

8. Harrison P, Clifford MJ, Long AC (2004) Composites Sci

Technol 64:1453

9. PAM-CRASH Theory Manual 2000, ESI Group, 99 Rue des

Solets, Silic 112, 94513 Rungis-Cedex, France

10. ASTM D1388–96E1. Standard test for Stiffness of Fabrics

11. PAM-FORM, ESI Group, 99 Rue des Solets, Silic 112, 94513

Rungis-Cedex, France

12. Pickett AK, Creech G, de Luca P (2005) Revue Européenne des
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